Abstract

A simple scheme for one-dimensional atom localization is proposed by employing a technique for the formation of the standing-wave regime using two unidirectional standing-wave fields. We consider a four-level atomic system similar to the one used by Paspalakis and Knight [Phys. Rev. Lett. 1998, 81, 293–296], with travelling-wave fields for the study of the phase control of emission in the presence of vacuum-induced interference between two spontaneous decay channels. In the present system precise position information of the atom can be achieved by measuring the frequency of spontaneous emission, which can be efficiently controlled by different system parameters and also by adjustment of the relative phase in the presence of the decay interference effect. The proposed scheme provides a potential technique to attain 100% detection probability of the atom in one wavelength range with generation of a sharp localization peak at low light level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call