Abstract
AbstractThe mechanical stability of catalyst coated membranes (CCMs) is an important factor for the overall durability and lifetime of polymer electrolyte fuel cells. In this article, the evolution of the mechanical properties of degraded CCMs is comprehensively assessed. A combined chemical and mechanical accelerated stress test (AST) was applied to simulate field operation and rapidly generate partially degraded CCM samples for tensile and expansion experiments under both room and fuel cell conditions. The tensile results indicated significant reductions in ultimate tensile strength, toughness, and fracture strain as a function of AST cycles, accompanied by a mild increase in elastic modulus. The increased brittleness and reduced fracture toughness of the CCM, caused primarily by chemical membrane degradation, is expected to play an important role in the ultimate failure of the fuel cell. The expansion tests revealed a linear decay in hygrothermal expansion, similar in magnitude to the loss of mechanical strength. The decline in CCM sensitivity to environmental changes leads to non‐uniform swelling and contraction that may exacerbate local degradation. Interestingly, the hygrothermal expansion in the late stages of degradation coincided with the fracture strain, which correlates to in situ development of fractures in chemically weakened membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.