Abstract

This paper develops a unified method to derive decay estimates for general second order integro-differential evolution equations with semilinear source terms. Depending on the properties of convolution kernels at infinity, we show that the energy of a mild solution decays exponentially or polynomially as t → + ∞ . Our approach is based on integral inequalities and multiplier techniques. These decay results can be applied to various partial differential equations. We discuss three examples: a semilinear viscoelastic wave equation, a linear anisotropic elasticity model, and a Petrovsky type system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.