Abstract

We present accurate experimental measurements of the lifetimes of rovibrational levels of the long-range H1Sigmag+ state for both D2 and H2, obtained directly from the observation of the time-dependent decay of the fluorescence from these excited levels. These results improve upon and extend those of Reinhold et al. [J. Chem. Phys. 112, 10754 (2000)]. Several decay pathways are open to these levels including fluorescence, predissociation, and autoionization. We present theoretical results for each of these processes, each calculated using the simplest but still appropriate level of theory. In particular, the theoretical calculations provide a quantitative explanation of the dramatic vibrational dependence of the observed lifetimes, the isotope dependence of the lifetimes for levels well localized within the H potential well and therefore not subject to significant tunneling, and an insight into the role of enhanced tunneling in autoionization. In these calculations each of the rovibrational levels of the H state is treated individually, without having to engage in a global coupled-state calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.