Abstract

We experimentally investigate the two- and three-body breakup dynamics of N2O () under the impact of fast (5 keV) electrons using a coincidence momentum spectroscopy technique. The kinetic energy release (KER) distributions have been derived from the measured momenta for various breakup channels. The present values are found to be quite different from a previously reported high energy electron impact study. From the measured momentum vectors, the geometry of the precursor molecular ion prior to the fragmentation has been reconstructed. The three-body decay dynamics of N2O3+ has been studied using Dalitz plots and Newton diagrams with a view of concerted and sequential decay mechanisms. It is found that the sequential process is present along with the concerted process for the N2O3+ N+ + NO2+ N+ + N+ + O+ channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.