Abstract

The angular distributions of fragments originating from the binary decay of oriented spherical and deformed nuclei are investigated with allowance for correct transformation properties of wave functions under time inversion. It is shown that, as in the case of protonic decay, the adiabatic approximation for collective rotational degrees of freedom of the systems under investigation is inapplicable in describing the angular distributions of fragments of the deep-subbarrier alpha and cluster decays of nuclei. It is demonstrated that this approximation is justified in describing spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of intrinsic axes, spins, and projections of spins and relative orbital angular momenta of fission fragments is analyzed by using the formalism of the unified theory of nuclear reactions and the theory of open Fermi systems. It is shown that the adiabatic approximation leads to the coherent interference between the wave functions for the relative motion of fragments, whereby the universal angular distributions of fission fragments of oriented nuclei is formed. Deviations from the A. Bohr formula are investigated for these distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.