Abstract

The copper-catalyzed decarboxylative benzylation of aryl and alkenyl boronic esters with electron-deficient aryl acetates is reported. The oxidative coupling proceeds under mild, aerobic conditions and tolerates a host of potentially reactive electrophilic functional groups that would be problematic with traditional benzylation methods (aryl iodides and bromides, protic heteroatoms, aldehydes, Michael acceptors). A reaction pathway in which a benzylic nucleophile is generated by aryl acetate decarboxylation and in turn is intercepted by the catalyst to form diarylmethane products is supported by mechanistic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.