Abstract

Numerical simulations based on Computational Fluid Dynamic techniques are performed to analyze the possibility of feeding a biomass-derived syngas into the combustion chamber upstream of the hoods for tissue-paper drying, to replace fossil fuels and thus decarbonize the plant. It was observed that, in the context of Favre-Averaged Navier–Stokes equations simulation, syngas requires detailed kinetics and finite-rate approaches, as the fast-chemistry ones, largely employed in the industrial practice for conventional fuels, lead to unreliable results. The actual chamber, originally designed to be fed with liquid petroleum gas, does not operate properly when fueled with syngas, with incomplete oxidation of carbon monoxide. Numerical simulations have proven how very few modifications of the chamber can be devised to permit feeding efficiently the syngas, obtaining low pollutant emissions and meeting the desired requirements in terms of flow and thermal uniformity for the drying process. The solution proposed in the present study, with the effective use of a biomass-derived syngas to feed the drying section of a tissue paper plant, will allow saving approximately 8500 ton/y of CO2 emissions in comparison with today’s fossil fuel carbon footprint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.