Abstract

Decarbonization gained prominence with the witnessed rise of temperature over recent years, particularly in the aftermath of the adoption of the Paris agreement for limiting the temperature increase within 2°C until 2050. Biogenic resources are explicitly indicated as carbon-neutral from Life Cycle Assessment perspective by the IPCC, shedding light on the carbon-neutral society by applying Biogenic Energy Carbon Capture for creating negative emissions. This article proposes a novel modeling approach by introducing carbon layers with specification on the principal carbon sources and sinks based upon an optimization algorithm, in order to solve the carbon loop issue in a highly interconnected energy system due to increasing penetration of biomass and carbon capture, use, and storage. This study contributes to quantifying biogenic and nonbiogenic carbon footprints, and optimizing the circular economy associated with a net-zero-emission society, in favor of policy-making for sustainable development in long terms.

Highlights

  • Carbon mitigation is becoming an essential and urgent issue in human activities, infiltrating into various societal fields, including politics, culture, economy, environment, lifestyle, ecology, resource, and so on

  • In terms of nonbiogenic carbon, natural gas import in this scenario amounts to 31.64 TWh/y, approximately the same level as today (33 TWh): the majority (84%) is used for power and heat supply, while 15% serves for transportation and the remaining part is transformed to methanol

  • Other nonbiogenic carbon sources stem mainly from jet-fuel, construction, and cement industry, as well as a small part of gasoline and diesel

Read more

Summary

Introduction

Carbon mitigation is becoming an essential and urgent issue in human activities, infiltrating into various societal fields, including politics, culture, economy, environment, lifestyle, ecology, resource, and so on. In the context of striving for a sustainable society, participating countries in the Paris Climate Summit which took place in 2015 reached an agreement, declaring the objective of keeping the increase in global average temperature to well below 2°C above preindustrial levels within this century, and further to pursue efforts to limit the increase to 1.5°C (IPCC, 2014) In this context, European countries are pioneering the exploration of plausible pathways toward carbon mitigation: the Netherlands announced that all Dutch cars must be emission free by 2030 (NLTimes, 2017); Germany planned to phase out the coal power plants by 2038 (Rinscheid and Wüstenhagen, 2019); and the Danish government decided to provide 100% of Denmark’s energy requirements in electricity, heating, and transport from renewable sources by 2050 (Madsen et al, 2018). In 2019, the Swiss Federal Council resolved that, as of 2050, Switzerland is to reduce its net greenhouse gas emissions to zero (net-zero-emission target) (SFOE, 2020) This declares it is aiming to meet the internationally agreed goal of limiting global climate warming to a maximum of 1.5°C vs the preindustrial period.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.