Abstract
We present the numerical tool DECaNT (Diffusion of Excitons in Carbon NanoTubes) that simulates exciton transport in thin films of carbon nanotubes. Through a mesh of nanotubes generated using the Bullet Physics C++ library, excitons move according to an ensemble Monte Carlo algorithm, with the scattering rates that account for tube chirality, orientation, and distance. We calculate the diffusion tensor from the position–position correlation functions and analyze its anisotropy and dependence on the film composition, morphology, and defect density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.