Abstract

Coronavirus disease 2019 (COVID-19) has crucially influenced anthropogenic activities, which in turn impacts upon the environment. In this study, we investigated the variations on aerosol optical depth (AOD) at 550 nm over the Bohai Sea and Yellow Sea during the COVID-19 lockdown (from February to March in 2020) of China mainland based on Moderate-resolution Imaging Spectroradiometer (MODIS) observation by comparing with historical AOD records (2011–2019). Our results show that with the lockdown implementation, the decade-low AOD levels are achieved in February and March 2020 (0.39 ± 0.18 and 0.37 ± 0.19, respectively), which are 22% and 28% (p < 0.01) lower than the average AOD between 2011 and 2019 (0.50 ± 0.08 and 0.52 ± 0.05, respectively). After the lockdown restrictions were relaxed and industrial production gradually resumed, the AOD in April 2020 rebounded to the historical average level. Besides, compared with historical observations (2011–2019), the AOD temporal variability from February to April 2020 showed different pattern, with the decade-high increase from March to April (+0.11) and decade-low increase from February to March (-0.01). Independent observations and simulation, including fine particulate matter (PM2.5) from ground-based measurements, wind field from Cross-Calibrated Multi-Platform, satellite-derived aerosol type, and back trajectories calculation by Hybird Single Paricle Lagrangian Intergrated Trajectory (HYSPLIT) model, indicated that the above abnormal AOD variation can be attributed to reduction of anthropogenic emissions during the COVID-19 lockdown period. The results of this paper, therefore, indicate that aerosols over the Bohai and Yellow Seas are strongly influenced by human activities, and the public health events such as the epidemic may alter the intensity of human activities and thus the spatio-temporal pattern of aerosol over ocean. With the global spread of the epidemic and the corresponding significant changes in human behavior patterns (restrictions on human activities, etc.), more studies should be carried out in the future about the aerosol variability and its potential impact on the marine environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.