Abstract

Pacific saury ( Cololabis saira) is one of the most important, small-sized, pelagic fishes in the North Pacific. Using correlation analysis and principal component analysis (PCA), we examined the relationships between climatic/oceanographic indices (Asian monsoon index (MOI), Southern Oscillation Index (SOI), North Pacific Index (NPI), Arctic Oscillation Index (AOI), Pacific Decadal Oscillation (PDO) index, air temperature, wind velocity, sea surface temperature (SST), and surface current velocity (SCV) in the Kuroshio axis), and abundance/biological indices of Pacific saury (adult catch, catch per unit effort, i.e., CPUE, condition factor, and body length and larval density) in order to detect the response of Pacific saury abundance to the recent climatic/oceanic regime shifts (1976/1977, 1987/1988, and 1997/1998). Our oceanographic analyses show that notable regime shifts occurred in 1987/1988 and possibly 1997/1998 in the Kuroshio region, while the same kind of regime shift was not readily apparent there in 1976/1977. Results of our oceanographic/biological analyses show that the decadal-scale variation pattern in Pacific saury abundance responded well to the regime shifts of 1987/1988 and 1997/1998. These results indicate that only the regime shifts which occurred in the Kuroshio region can affect Pacific saury abundance. Our results also showed that the abundance and biological indices of saury significantly correlated with both the SSTs in the northwestern Kuroshio waters and the SCV in the Kuroshio axis in winter. These correlations suggest that winter oceanographic conditions in the Kuroshio region strongly affect the early survival process and determine the recruitment success of Pacific saury. The abundance of other major small pelagic species also changed greatly around 1989, suggesting that the regime shift in the late 1980s occurred in the pelagic ecosystem basin. We concluded that Pacific saury could be used as a bio-indicator of regime shifts in the northwestern subtropical Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call