Abstract

Arctic rivers operate as integrators of northern high latitude regions, where large stocks of soil organic carbon (OC) are currently experiencing rapid warming. Here we show that tracking total OC in the Mackenzie Delta whose upstream catchment is underlain by permafrost soils is now possible using polar-orbiting satellite ocean color observations. A non-parametric trend analysis that is valid for hydrological data shows a significant increase in dissolved OC (DOC) as well as particulate OC (POC) concentrations in late summer (0.019 and 0.069 g m−3 year−1; p < 0.05 for both). Uncertainties of the satellite estimates of DOC and POC do not influence our results. These concentration increases are not related to changes in river discharge. Parallel increases of independent long-term (1979–2018) in situ measurements of thaw depth of the active layer, as well as meteorological and hydrological patterns suggest that these late summer increases can likely be explained by increasing inputs of permafrost OC. This study shows great promise for remote, large-scale detection of catchment-scale thaw impacts from space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.