Abstract

Recent local-scale observations of glaciers, streams, and soil surfaces in the McMurdo Dry Valleys of Antarctica (MDV) have documented evidence for rapid ice loss, glacial thinning, and ground surface subsidence associated with melting of ground ice. To evaluate the extent, magnitude, and location of decadal-scale landscape change in the MDV, we collected airborne lidar elevation data in 2014–2015 and compared these data to a 2001–2002 airborne lidar campaign. This regional assessment of elevation change spans the recent acceleration of warming and melting observed by long-term meteorological and ecosystem response experiments, allowing us to assess the response of MDV surfaces to warming and potential thawing feedbacks. We find that locations of thermokarst subsidence are strongly associated with the presence of excess ground ice and with proximity to surface or shallow subsurface (active layer) water. Subsidence occurs across soil types and landforms, in low-lying, low-slope areas with impeded drainage and also high on steep valley walls. Glacier thinning is widespread and is associated with the growth of fine-scale roughness. Pond levels are rising in most closed-basin lakes in the MDV, across all microclimate zones. These observations highlight the continued importance of insolation-driven melting in the MDV. The regional melt pattern is consistent with an overall transition of water storage from the local cryosphere (glaciers, permafrost) to the hydrosphere (closed basin lakes and ponds as well as the Ross Sea). We interpret this regional melting pattern to reflect a transition to Arctic and alpine-style, hydrologically mediated permafrost and glacial melt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.