Abstract
Glacier ice-thickness measurement and distribution is one of the essential variables to assess present status of glacier-water equivalent and its volumetric reserve as well as to model the future glacier dynamics under the climate changing scenario. Yet, substantial gaps in ice thickness information exist for the Himalayan glaciers. The present study provides a long-term assessment (1965–2016) of recessional and area change patterns, as well as the detailed field-based (2016–2017) Ground Penetrating Radar(GPR), derived ice-thickness measurement of the Menthosa Glacier, Lahaul Himalaya. Additionally, the study examines whether the modelled ice thickness from remote sensing data is consistent with the field-based GPR measurement and how can it be improved. The extensive field surveys coupled with the multi-temporal high (Corona KH-4A) to medium resolution (Landsat Enhanced Thematic Mapper+ (ETM+)/Operational Land Imager (OLI), Sentinel 2A-Multispectral Instrument (MSI)) remote sensing data and cross-sectional GPR surveyed profile measurements have been used to examine past half a century (1965–2016) glacier fluctuation and the recent ice-thickness estimations, respectively. The results show that the Menthosa Glacier receded by 301.5 ± 19.2 m during the past half a century (1965–2016) with an average annual retreat of 5.9 ± 0.4 m a−1, whereas glacier lost 0.09 km2 ice in the frontal section. Field measurement over the past one decade (2006–2017) also conforms to a continuous recessional pattern and substantial glacier degeneration particularly the extensive surface lowering and significant appearance of ice-cliffs in the ablation and lateral zones over this period. The GPR measurements (2017) show the minimum glacier ice thickness of 24 meters at 4691 m a.s.l. (in the lower part of ablation area) and maximum glacier ice thickness of 55 meters measured at 4758 m a.s.l. (in the upper left-side tributary part of ablation area). Moreover, the modelled ice thickness derived from remotely sensed data is having Root Mean Square Error (RMSE) between 38 to 72 ± 10 m as compared with GPR measured ice thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.