Abstract

The assessment of predictability for decadal predictions of quantities like temperature and precipitation typically focuses on regional and temporal mean values. However, changes in extremes can be different to changes in mean climate, and accordingly their predictability may be different. We use simulations from CSIRO-Mk3-6-0 (CMIP5 archive) to set up a ‘perfect model’ experiment to compare the predictability for mean and extreme temperature and precipitation on interannual to decadal time-scales. The results show that both the mean and likelihood of near-surface temperature extremes is potentially predictable in many regions in the first lead year, while the areas with precipitation predictability tend to be mostly in low-latitude regions during this period. On decadal time scales, significant potential skill for mean and extreme temperatures is found over the North Atlantic and Southern Ocean but also over some land areas including North Africa, Europe and North America. The general spatial patterns of predictability are very similar between the mean and extremes. However, indices of moderate temperature extremes in particular show a tendency towards higher predictability than the mean. The approach to studying predictability presented here uses international coordinated model intercomparison project simulations. However a larger number of different initializations would be required from more models to allow improved robustness of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.