Abstract

The low-frequency linear eigenmodes of the reduced-gravity shallow-water equations with weak friction are calculated numerically and using an analytic approximation. For basins with a large variation of the Coriolis parameter, large-scale eigenmodes emerge: the eigenfrequencies are integer multiples of the frequency for the gravest mode, which, in turn, has a period given by the transit time of the slowest long Rossby wave. The e-folding decay times are comparable to the period and independent of friction. These eigenmodes are excited by stochastic wind forcing and this leads to a weak peak in the spectral response near the frequency of the least-damped eigenmode. This decadal-frequency peak is most evident on the eastern and western boundaries and in the equatorial region of the basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.