Abstract

A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean–global atmosphere (POGA) experiment, with fixed radiative forcing, is conducted to evaluate the DIOD variability and its relationship with the TPDV. In this experiment, the sea surface temperature anomalies are restored to observations over the tropical Pacific, but left as interactive with the atmosphere elsewhere. The TPDV-forced DIOD, represented as the ensemble mean of 10 simulations in POGA, accounts for one third of the total variance. The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback. Thermocline anomalies do not exhibit a propagating signal, indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean. The DIOD–TPDV correlation differs among the 10 simulations, with a low correlation corresponding to a strong internal DIOD independent of the TPDV. The variance of this internal DIOD depends on the background state in the Indian Ocean, modulated by the thermocline depth off Sumatra/Java.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.