Abstract

Abstract. To accurately capture the impacts of nitrogen (N) on the land carbon (C) sink in Earth system models, model responses to both N limitation and ecosystem N additions (e.g., from atmospheric N deposition and fertilizer) need to be evaluated. The response of the land C sink to N additions depends on the fate of these additions: that is, how much of the added N is lost from the ecosystem through N loss pathways or recovered and used to increase C storage in plants and soils. Here, we evaluate the C–N dynamics of the latest version of a global land model, the Community Land Model version 5 (CLM5), and how they vary when ecosystems have large N inputs and losses (i.e., an open N cycle) or small N inputs and losses (i.e., a closed N cycle). This comparison allows us to identify potential improvements to CLM5 that would apply to simulated N cycles along the open-to-closed spectrum. We also compare the short- (< 3 years) and longer-term (5–17 years) N fates in CLM5 against observations from 13 long-term 15N tracer addition experiments at eight temperate forest sites. Simulations using both open and closed N cycles overestimated plant N recovery following N additions. In particular, the model configuration with a closed N cycle simulated that plants acquired more than twice the amount of added N recovered in 15N tracer studies on short timescales (CLM5: 46±12 %; observations: 18±12 %; mean across sites ±1 standard deviation) and almost twice as much on longer timescales (CLM5: 23±6 %; observations: 13±5 %). Soil N recoveries in simulations with closed N cycles were closer to observations in the short term (CLM5: 40±10 %; observations: 54±22 %) but smaller than observations in the long term (CLM5: 59±15 %; observations: 69±18 %). Simulations with open N cycles estimated similar patterns in plant and soil N recovery, except that soil N recovery was also smaller than observations in the short term. In both open and closed sets of simulations, soil N recoveries in CLM5 occurred from the cycling of N through plants rather than through direct immobilization in the soil, as is often indicated by tracer studies. Although CLM5 greatly overestimated plant N recovery, the simulated increase in C stocks to recovered N was not much larger than estimated by observations, largely because the model's assumed C:N ratio for wood was nearly half that suggested by measurements at the field sites. Overall, results suggest that simulating accurate ecosystem responses to changes in N additions requires increasing soil competition for N relative to plants and examining model assumptions of C:N stoichiometry, which should also improve model estimates of other terrestrial C–N processes and interactions.

Highlights

  • Biogeochemical processes in plants and soils influence Earth’s climate by controlling how much carbon dioxide (CO2) can be removed from the atmosphere and placed into long-term storage in terrestrial ecosystems (Bonan, 2008)

  • Observed soil C stocks were typically higher than those modeled under both open and closed N cycles in Community Land Model version 5 (CLM5) (p < 0.01, Table 3). Simulations with both an open and closed N cycle produced presentday aboveground net primary productivity rates (ANPP), leaf area index, plant C stocks, and plant and soil N stocks that were statistically similar to observations (p > 0.05, Table 3)

  • The accuracy of Earth system model projections of land C storage relies on how well land models can simulate the long-term responses of plant and soil C stocks to environmental change, including to shifts in N deposition

Read more

Summary

Introduction

Biogeochemical processes in plants and soils influence Earth’s climate by controlling how much carbon dioxide (CO2) can be removed from the atmosphere and placed into long-term storage in terrestrial ecosystems (Bonan, 2008). Earth system model ensembles that compare multiple models against each other persistently show a large uncertainty around estimates of CO2 fluxes exchanged between the land surface and the atmosphere under future scenarios of increasing CO2 and climate change (Friedlingstein et al, 2006, 2014; Anav et al, 2013). This uncertainty is mainly driven by differences in how models represent biological processes on land and their responses to increasing atmospheric CO2 concentrations (Lovenduski and Bonan, 2017; Bonan and Doney, 2018). Evaluating model representations of N cycling is critical for improving our understanding of the magnitude of ecosystem C response to changes in N additions (dC/dN; Sutton et al, 2008) and how dC/dN influences the size of the terrestrial C sink over the 21st century

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call