Abstract

In this paper, we report air concentrations of BDE-209 in both gas- and particle-phases across China. The annual mean concentrations of BDE-209 were from below detection limit (BDL) to 77.0 pg·m-3 in the gas-phase and 1.06-728 pg·m-3 in the particle-phase. Among the nine PBDEs measured, BDE-209 is the dominant congener in Chinese atmosphere in both gas and particle phases. We predicted the partitioning behavior of BDE-209 in air using our newly developed steady state equation, and the results matched the monitoring data worldwide very well. It was found that the logarithm of the partition quotient of BDE-209 is a constant, and equal to -1.53 under the global ambient temperature range (from -50 to +50 °C). The gaseous fractions of BDE-209 in air depends on the concentration of total suspended particle (TSP). The most important conclusion derived from this study is that, BDE-209, like other semivolatile organic compounds (SVOCs), cannot be sorbed entirely to atmospheric particles; and there is a significant amount of gaseous BDE-209 in global atmosphere, which is subject to long-range atmospheric transport (LRAT). Therefore, it is not surprising that BDE-209 can enter the Arctic through LRAT mainly by air transport rather than by particle movement. This is a significant advancement in understanding the global transport process and the pathways entering the Arctic for chemicals with low volatility and high octanol-air partition coefficients, such as BDE-209.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.