Abstract

BackgroundOsteosarcoma is the most common malignancy of bone. HIF-1 (hypoxia-inducible factor 1) activation is critical for the metabolic reprogramming and progression of solid tumors, and DEC2 (differentiated embryonic chondrocyte gene 2) has been recently reported to suppress HIF-1 in human breast and endometrial cancers. However, the roles of HIF-1 and DEC2 in human osteosarcomas remain unclear.MethodsWe evaluated the correlation of DEC2 and HIF-1 expression to the prognosis, and studied the roles of DEC2 and HIF-1 activation in the invasiveness of osteosarcoma. Multiple approaches including immunohistochemical staining of clinical osteosarcoma tissues, siRNA-based knockdown and other molecular biology techniques were used. Particularly, by using a repetitive trans-well culture-based in vitro evolution system, we selected a more invasive subpopulation (U2OS-M) of osteosarcoma cells from U2OS and used it as a model to study the roles of DEC2 and HIF-1 in the invasiveness of osteosarcoma.ResultsWe found that the expression of DEC2 was positively correlated with HIF-1α levels, and HIF-1α expression positively correlated with poor prognosis in osteosarcomas. DEC2 knockdown in osteosarcoma cell lines (U2OS, MNNG and 143B) attenuated HIF-1α accumulation and impaired the up-regulation of HIF-1 target genes in response to hypoxia. Compared with the low invasive parental U2OS, U2OS-M showed higher levels of DEC2 expression which were confirmed at both mRNA and protein levels. Importantly, we found that the increased DEC2 expression resulted in a more rapid accumulation of HIF-1α in U2OS-M cells in response to hypoxia. Finally, we found that HIF-1 activation is sufficient to upregulate DEC2 expression in osteosarcoma cells.ConclusionTaken together, whereas DEC2 was found to promote HIF-1α degradation in other types of tumors, our data indicate that DEC2 facilitates HIF-1α stabilization and promotes HIF-1 activation in osteosarcoma. This implies that DEC2 may contribute to the progression and metastasis of human osteosarcoma by sensitizing tumor cells to hypoxia. On the other hand, HIF-1 activation may contribute to the expression of DEC2 in osteosarcoma. This is the first demonstration of a novel DEC2-HIF-1 vicious cycle in osteosarcoma and a tumor-type specific role for DEC2.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0135-8) contains supplementary material, which is available to authorized users.

Highlights

  • Osteosarcoma is the most common malignancy of bone

  • Expression of Differentiated embryonic chondrocyte gene 2 (DEC2) and HIF-1α in human osteosarcoma specimens correlates with poor prognosis To investigate the involvement of HIF-1α and DEC2 in the progression and metastasis of osteosarcoma, we used a cohort of 50 primary osteosarcoma samples obtained from clinical patients

  • Using Kaplan-Meier survival analysis (Figure 1B), we found that high expression of HIF-1α was correlated with higher probability of metastasis and significantly reduced disease-free survival (DFS), suggesting that hypoxia-inducible factor-1 (HIF-1) activation may be a determining factor for metastasis and event-free survival rate (EFS) in osteosarcoma

Read more

Summary

Introduction

HIF-1 (hypoxia-inducible factor 1) activation is critical for the metabolic reprogramming and progression of solid tumors, and DEC2 (differentiated embryonic chondrocyte gene 2) has been recently reported to suppress HIF-1 in human breast and endometrial cancers. Increased HIF-1α levels have been found in many tumor types, accompanied by increased expression of HIF-1 target genes, including but not limited to, vascular endothelial growth factor A (VEGFA), phosphoglycerate kinase 1 (PGK1), angiopoietin-like 4 (ANGPTL4), carbonic anhydrase IX (CAIX) and hexose kinase 2 (HK2) [14]. HIF-1α overexpression has been correlated with high risk of metastasis and high mortality in many human cancers, including breast cancer and renal cell carcinoma [15,16,17], whereas the molecular mechanism underlying its overexpression in osteosarcoma and potential impact on osteosarcoma progression have not been fully understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call