Abstract

The Debye–Waller factor has been calculated as a function of temperature for the four hexagonal close-packed (hcp) metals cobalt, ruthenium, erbium, and scandium, using a lattice-dynamical model to evaluate the normal mode frequencies and eigenvectors in the harmonic approximation. The calculation of the anisotropic temperature factors for these metals requires a knowledge of the eigenvectors for the various normal modes of vibration. The frequency distribution function is also used to calculate the mean-square amplitude of displacement of the atoms, in the cubic approximation. The first and second negative moments of the distribution function are used to calculate the low- and high-temperature limits of [Formula: see text], respectively. The value of the Lindemann parameter obtained from the present calculations is consistent with the value quoted by Gschneidner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call