Abstract

In this work, the average time of slow dielectric relaxation in sub- and supercritical polar gases is considered in terms of a combination of two Debye relaxation mechanisms. Under the assumption of thermal equilibrium, the corresponding relaxation times are theoretically predicted to be proportional to the mean binary collision time and mean translational deceleration time of free molecules with the proportionality factor close to unity. The microwave heating rate for pressurized pure gases and gas mixtures in constant-pressure and constant-density conditions is found from the Poynting formula. Temperature-dependent frequency spectra of the isobaric and isochoric heating rates for sub- and supercritical water are obtained with an allowance for non-Debye high-frequency relaxations. Perceptible temperature effects in the supercritical water heating rates at relaxation frequency are predicted when pressures/densities are high enough and considerable reduction of the heating time for higher pressures/densities is expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.