Abstract
In model checking, a counterexample is considered as a valuable tool for debugging. In Probabilistic Model Checking (PMC), counterexample generation has a quantitative aspect. The counterexample in PMC is a set of paths in which a path formula holds, and their accumulative probability mass violates the probability threshold. However, understanding the counterexample is not an easy task. In this paper we address the task of counterexample analysis for Markov Decision Processes (MDPs). We propose an aided-diagnostic method for probabilistic counterexamples based on the notions of causality, responsibility and blame. Given a counterexample for a Probabilistic CTL (PCTL) formula that does not hold over an MDP model, this method guides the user to the most relevant parts of the model that led to the violation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.