Abstract

We observed niveo-aeolian deposits, denivation features, and small meltwater-induced debris flows that had formed at the Great Kobuk Sand Dunes, northwestern interior Alaska in late March 2010. This high-latitude, cold-climate dune field is being studied as a planetary analog to improve our understanding of factors that may trigger debris flows on the lee slopes of martian aeolian dunes. Debris flows consisted of a sand and liquid water mixture that cascaded down the lee slopes of two barchanoid dunes on days when measured ground surface temperatures were below freezing. We hypothesize that relatively dark sand on snow caused local hot spots where solar radiation could be absorbed by the sand and conducted into the underlying snow, enabling meltwater to form and sand to be mobilized. This investigation provides insights into the interactions between niveo-aeolian deposition, slope aspect and insolation, thawing, and initiation of alluvial processes. These debris flows are morphologically similar to those associated with seasonal gullies or erosion tracks visible on the slopes of mid- to high-latitude dune fields in both martian hemispheres. Localized heating and thawing at scales too small for orbital sensors to identify may yield martian debris flows at current climate conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call