Abstract

Debris flows and debris avalanches are complex, gravity-driven currents of rock, water and sediments that can be highly mobile. This combination of component materials leads to a rich morphology and unusual dynamics, exhibiting features of both granular materials and viscous gravity currents. Although extreme events such as those at Kolka Karmadon in North Ossetia (2002) [1] and Huascaran (1970) [2] strongly motivate us to understand how such high levels of mobility can occur, smaller events are ubiquitous and capable of endangering infrastructure and life, requiring mitigation. Recent progress in modelling debris flows has seen the development of multiphase models that can start to provide clues of the origins of the unique phenomenology of debris flows. However, the spatial and temporal variations that debris flows exhibit make this task challenging and laboratory experiments, where boundary and initial conditions can be controlled and reproduced, are crucial both to validate models and to inspire new modelling approaches. This paper discusses recent laboratory experiments on debris flows and the state of the art in numerical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.