Abstract

Analysis of the pre- and post-eruption topography, together with observations of the avalanche deposition sequence, yields a triggering mechanism for the 6 August 2012 eruption of Upper Te Maari. The avalanche was composed of a wedge of c. 683000–774000m3 of coarse breccia, spatter and clay-rich tuffs and diamictons which slid from the western flanks of the Upper Te Maari Crater, the failure plane is considered to be a hydrothermally altered clay layer. This landslide led to a pressure drop of up to 0.5MPa, enough to generate an explosive eruption from the hydrothermal system below, which had been activated over the months earlier by additional heat and gas from a shallow intrusion. The landslide transformed after c. 700m into a clay-rich cohesive debris flow, eroding soils from steep, narrow stretches of channel, before depositing on intermediate broad flatter reaches. After each erosive reach, the debris flow contained greater clay and mud contents and became more mobile. At c. 2km flow distance, however, the unsaturated flow stopped, due to a lack of excess pore pressure. This volume controlled flow deposited thick, steep sided lobes behind an outer levee, accreting inward and upward to form a series of curved surface ridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.