Abstract
Using salt caverns for compressed air energy storage (CAES) is a main development direction in China to provide a continuous power supply produced by renewable energy (e.g., solar, wind, tidal energy). A mathematical model used to predict the debrining parameters for a salt cavern used for CAES is built based on the pressure equilibrium principle. Combined with the sonar survey data of a salt cavern, the equations are deduced for calculating the debrining parameters. A mathematical model is proposed for the calculation of the critical safe distance between the air and brine interface (AB interface) and debrining tubing inlet. Based on above mathematical models, a program is developed using Visual Basic computer language. A salt cavern of Jintan salt district, Changzhou city, Jiangsu province, China, is simulated as an example. Results show the tubing size is the most important parameter for improving debrining efficiency. The tubing with diameter and wall thickness of 139.7 mm × 6.98 mm is proposed in the CAES cavern debrining to replace the one with size of 114.3 mm × 6.88 mm used in the traditional debrining for the salt cavern gas storage of Jintan. This can decrease the total debrining time by 43%, and only increases energy consumption by about 10%. This study can provide a theoretical foundation and a technological reference for the debrining of Jintan salt cavern used for CAES.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.