Abstract

Designing and selecting cell culture media along with their feeding are a key strategy to maximize culture performance in biopharmaceutical processes. However, the sensitivity of mammalian cells to their culture environment necessitates specific nutritional requirements for their growth and the production of high-quality proteins such as antibodies, depending on the cell lines and operational conditions employed. In this regard, previously we developed a data-driven and in-silico model-guided systematic framework to investigate the effect of growth media on Chinese hamster ovary (CHO) cell culture performance, allowing us to design and reformulate basal media. To expand our exploration for media development research, we evaluated two chemically defined feed media, A and B, using a monoclonal antibody-producing CHO K1 cell line in ambr15 bioreactor runs. We observed a significant impact of the feed media on various aspects of cell culture, including growth, longevity, viability, productivity, and the production of toxic metabolites. Specifically, the concentrated feed A was inadequate in sustaining prolonged cell culture and achieving high titers when compared to feed B. Within our framework, we systematically investigated the major metabolic bottlenecks in the tricarboxylic acid cycle and relevant amino acid transferase reactions. This analysis identified target components that play a crucial role in alleviating bottlenecks and designing highly productive cell cultures, specifically the addition of glutamate to feed A and asparagine to feed B. Based on our findings, we reformulated the feeds by adjusting the amounts of the targeted amino acids and successfully validated the effectiveness of the strategy in promoting cell growth, life span, and/or titer. This article is protected by copyright. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.