Abstract
Deblurring Poisson noisy images has recently been subject of an increasingly amount of works in various applications such as astronomical imaging, fluorescent confocal microscopy imaging, single particle emission computed tomography (SPECT) and positron emission tomography (PET). Many works promote the introduction of an explicit prior on the solution to regularize the ill-posed inverse problem for improving the quality of the images. In this paper, we consider using the total variation with overlapping group sparsity as a prior information. The proposed method can avoid staircase effect and preserve edges in the restored images. After converting the proposed model to a constrained problem by variable splitting, we solve the corresponding problem with the alternating direction method of multipliers (ADMM). Numerical examples for deblurring Poisson noisy images are given to show that the proposed method outperforms some existing methods in terms of the signal-to-noise ratio, relative error and structural similarity index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.