Abstract

This chapter presents a novel approach for classification of dataset by suitably tuning the parameters of radial basis function networks with an additional cost of feature selection. Inputting optimal and relevant set of features to a radial basis function may greatly enhance the network efficiency (in terms of accuracy) at the same time compact its size. In this chapter, the authors use information gain theory (a kind of filter approach) for reducing the features and differential evolution for tuning center and spread of radial basis functions. Different feature selection methods, handling missing values and removal of inconsistency to improve the classification accuracy of the proposed model are emphasized. The proposed approach is validated with a few benchmarking highly skewed and balanced dataset retrieved from University of California, Irvine (UCI) repository. The experimental study is encouraging to pursue further extensive research in highly skewed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.