Abstract

Flavor production among 12 strains of Debaryomyces hansenii when grown on a simple cheese model mimicking a cheese surface was investigated by dynamic headspace sampling followed by gas chromatography-mass spectrometry. The present study confirmed that D. hansenii possess the ability to produce important cheese flavor compounds, primarily branched-chain aldehydes and alcohols, and thus important for the final cheese flavor. Quantification of representative aldehydes (2-Methylpropanal, 3-Methylbutanal) and alcohols (2-Methyl-1-propanol, 3-Methyl-1-butanol, and 3-Methyl-3-buten-1-ol) showed that the investigated D. hansenii strains varied significantly with respect to production of these flavor compounds. Contrary to the alcohols (2-Methyl-1-propanol, 3-Methyl-1-butanol, and 3-Methyl-3-buten-1-ol), the aldehydes (2-Methylpropanal, 3-Methylbutanal) were produced by the D. hansenii strains in concentrations higher than their sensory threshold values, and thus seemed more important than alcohols for cheese flavor. These results show that D. hansenii strains may have potential to be applied as cultures for increasing the nutty/malty flavor of cheese due to their production of aldehydes. However, due to large strain variations, production of flavor compounds has to be taken into consideration for selection of D. hansenii strains as starter cultures for cheese production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call