Abstract
Tyrosyl DNA phosphodiesterase 2 (TDP2) facilitates the repair of topoisomerase II (TOP2)-linked DNA double-strand breaks and, as a consequence, is required for cellular resistance to TOP2 "poisons". Recently, a deazaflavin series of compounds were identified as potent inhibitors of TDP2, in vitro. Here, however, we show that while somedeazaflavins can induce cellular sensitivity to the TOP2 poison etoposide, they do so independently of TDP2 status. Consistent with this, both the cellular level of etoposide-induced TOP2cleavage complexes and the intracellular concentration of etoposide was increased by incubation with deazaflavin, suggesting an impact of these compounds on etoposide uptake/efflux. In addition, deazaflavin failed to increase the level of TOP2 cleavage complexes or sensitivity induced by m-AMSA, which is a different class of TOP2 poison to which TDP2-defective cells are also sensitive. In conclusion, while deazaflavins are potent inhibitors of TDP2 in vitro, their limited cell permeability and likely interference with etoposide influx/efflux limits their utility in cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.