Abstract

Tumor necrosis factor superfamily 15 (TNFSF15) suppresses angiogenesis by specifically inducing apoptosis in proliferating endothelial cells. Death receptor 3 (DR3), a member of the TNF receptor superfamily (TNFRSF25), has been identified as a receptor for TNFSF15 to activate T cells. It is unclear, however, whether DR3 mediates TNFSF15 activity on endothelial cells. Here we show that siRNA-mediated knockdown of DR3 in an in vivo Matrigel angiogenesis assay, or in adult bovine aortic endothelial (ABAE) cell cultures, leads to resistance of endothelial cells to TNFSF15-induced apoptosis. Interestingly, DR3-depleted cells also exhibited markedly diminished responsiveness to TNFα cytotoxicity, even though DR3 is not a receptor for TNFα. Treatment of the cells with either TNFSF15 siRNA or a TNFSF15-neutralizing antibody, 4-3H, also results in a significant inhibition of TNFα-induced apoptosis. Mechanistically, DR3 siRNA treatment gives rise to an increase of ERK1/2 MAPK activity, and up-regulation of the anti-apoptotic proteins c-FLIP and Bcl-2, thus strengthening apoptosis-resisting potential in the cells. These findings indicate that DR3 mediates TNFSF15-induced endothelial cell apoptosis, and that up-regulation of TNFSF15 expression stimulated by TNFα is partly but significantly responsible for TNFα-induced apoptosis in endothelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.