Abstract

Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor-1 (TNFR-1). TNFR-1-associated death domain (TRADD) protein is an adapter molecule that bridges the interaction between TNFR-1 and receptor-interacting serine/threonine-protein kinase 1 (RIP1). However, the molecular mechanism of the complex formation of these proteins has not yet been identified. Here, the binding among TNFR-1, TRADD, and RIP1 was identified using a GST pull-down assay and Biacore biosensor experiment. This study showed that structural characterization and formation of the death-signaling complex could be predicted using TNFR-1, TRADD, and RIP1. In addition, we found that the structure-based mutations of TNFR-1 (P367A and P368A), TRADD (F266A), and RIP1 (M637A and R638A) disrupted formation of the death domain (DD) complex and prevented stable interactions among those DDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call