Abstract
Differential cell death is a common feature of aging and age-related disease. In the retina, 30% of rod photoreceptors are lost over life in humans and rodents. However, studies have failed to show age-related cell death in mouse cone photoreceptors, which is surprising because cone physiological function declines with age. Moreover in human, differential loss of short wavelength cone function is an aspect of age-related retinal disease. Here, cones are examined in young (3-month-old) and aged (12-month-old) C57 mice and also in complement factor H knock out mice (CFH−/−) that have been proposed as a murine model of age-related macular degeneration. In vivo imaging showed significant age-related reductions in outer retinal thickness in both groups over this period. Immunostaining for opsins revealed a specific significant decline of >20% for the medium/long (M/L)-wavelength cones but only in the periphery. S cones numbers were not significantly affected by age. This differential cell loss was backed up with quantitative real-time polymerase chain reaction for the 2 opsins, again showing S opsin was unaffected, but that M/L opsin was reduced particularly in CFH−/− mice. These results demonstrate aged cone loss, but surprisingly, in both genotypes, it is only significant in the peripheral ventral retina and focused on the M/L population and not S cones. We speculate that there may be fundamental differences in differential cone loss between human and mouse that may question the validity of mouse models of human outer retinal aging and pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.