Abstract

Arenes are interesting feedstocks for organic synthesis because of their natural abundance. However, the stability conferred by aromaticity severely limits their reactivity, mostly to reactions where aromaticity is retained. Methods for oxidative dearomatization of unactivated arenes are exceedingly rare but particularly valuable because the introduction of Csp3-O bonds transforms the flat aromatic ring in 3D skeletons and confers the oxygenated molecules with a very rich chemistry suitable for diversification. Mimicking the activity of naphthalene dioxygenase (NDO), a non-heme iron-dependent bacterial enzyme, herein we describe the catalytic syn-dihydroxylation of naphthalenes with hydrogen peroxide, employing a sterically encumbered and exceedingly reactive yet chemoselective iron catalyst. The high electrophilicity of hypervalent iron oxo species is devised as a key to enabling overcoming the aromatically promoted kinetic stability. Interestingly, the first dihydroxylation of the arene renders a reactive olefinic site ready for further dihydroxylation. Sequential bis-dihydroxylation of a broad range of naphthalenes provides valuable tetrahydroxylated products in preparative yields, amenable for rapid diversification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.