Abstract

Herein, we report the first examples of the synthesis of pyrroloindolines by means of (3 + 2) dearomative annulation reactions between 3-substituted indoles and highly reactive azaoxyallyl cations. Computational studies using density functional theory (DFT) (B3LYP-D3/6-311G**++) support a stepwise reaction pathway in which initial C–C bond formation takes place at C3 of indole, followed by ring closure to give the observed products. Insights gleaned from these calculations indicate that the solvent, either TFE or HFIP, can stabilize the transition state through H-bonding interactions with oxygen of the azaoxyallyl cation and other relevant intermediates, thereby increasing the rates of these reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.