Abstract
Cuckoo hashing is a highly practical dynamic dictionary: it provides amortized constant insertion time, worst case constant deletion time and lookup time, and good memory utilization. However, with a noticeable probability during the insertion of n elements some insertion requires *** (logn ) time. Whereas such an amortized guarantee may be suitable for some applications, in other applications (such as high-performance routing) this is highly undesirable. Kirsch and Mitzenmacher (Allerton '07) proposed a de-amortization of cuckoo hashing using queueing techniques that preserve its attractive properties. They demonstrated a significant improvement to the worst case performance of cuckoo hashing via experimental results, but left open the problem of constructing a scheme with provable properties. In this work we present a de-amortization of cuckoo hashing that provably guarantees constant worst case operations. Specifically, for any sequence of polynomially many operations, with overwhelming probability over the randomness of the initialization phase, each operation is performed in constant time. In addition, we present a general approach for proving that the performance guarantees are preserved when using hash functions with limited independence instead of truly random hash functions. Our approach relies on a recent result of Braverman (CCC '09) showing that poly-logarithmic independence fools AC 0 circuits, and may find additional applications in various similar settings. Our theoretical analysis and experimental results indicate that the scheme is highly efficient, and provides a practical alternative to the only other known approach for constructing dynamic dictionaries with such worst case guarantees, due to Dietzfelbinger and Meyer auf der Heide (ICALP '90).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.