Abstract

For the development of alternative concepts for the cost effective treatment of wastewaters with high ammonium content and low C/N-ratio, autotrophic consortia of micro-organisms with the ability to convert ammonium directly into N2 are of particular interest. Several full-scale industrial biofilm plants eliminating nitrogen without carbon source for years in a stable process, are suspected for some time to harbor active anaerobic ammonium oxidizers in deeper, oxygen-limited biofilm layers. In order to identify the processes of the single-stage nitrogen elimination (deammonification) in biofilm systems and to allocate them to the responsible micro-organisms, a deammonifying moving-bed pilot plant was investigated in detail. 15N-labelled tracer compounds were used as well as 16S rDNA libraries and in situ identification of dominant organisms. The usage of rRNA-targeted oligonucleotide probes (FISH) was particularly emphasized on the ammonium oxidizers of the beta-subclass of Proteobacteria and on the members of the order Planctomycetales. The combined application of these methods led to a deeper insight into the population structure and function of a deammonifying biofilm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call