Abstract

In reactions between styrene oxide and the ring nitrogen at the 1-position of deoxyadenosine, the epoxide is opened at both the alpha- (benzylic) and beta-carbons. The 1-substituted nucleosides formed are unstable and subsequently undergo either Dimroth rearrangement to give N6-substituted deoxyadenosines or deamination to give 1-substituted deoxyinosines. alphaN6-Substituted compounds are also formed from direct reaction at the exocyclic nitrogen. Kinetic experiments revealed that relative rates of deamination of 1-substituted deoxyadenosine-styrene oxides and 1-substituted adenosine-styrene oxides were similar. However, the rate of Dimroth rearrangement in beta1-substituted adenosine-styrene oxides was approximately 2.3-fold greater than that of beta1-substituted deoxyadenosine-styrene oxides and approximately 1.5-fold greater in alpha1-substituted adenosine-styrene oxides relative to alpha1-substituted deoxyadenosine-styrene oxides. Analysis of the products formed from reactions of styrene oxide with [3H]deoxyadenosine and [3H]deoxyadenosine incorporated into native and denatured DNA showed that the double-helical DNA structure reduced the levels of adducts formed 5-fold relative to denatured DNA but did not present a complete barrier to formation of either N6-substituted deoxyadenosine- or 1-substituted deoxyinosine-styrene oxide adducts in native DNA. Additionally, in denatured and native DNA the product distributions were altered in favor of formation of beta1-substituted deoxyinosine-styrene oxide adducts with respect to reactions of the nucleoside. The ratio of retained to inverted configuration of alphaN6-substituted products was higher in DNA than in nucleoside reactions. These experiments indicate that in addition to the N6-position, the ring nitrogen at the 1-position of deoxyadenosine is available, to some extent, for reaction in native DNA. In styrene oxide-DNA reactions, formation of 1-substituted adenines can lead to deaminated products where both Watson-Crick hydrogen-bonding sites are disrupted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call