Abstract

Optimization algorithms with momentum, e.g., (ADAM), have been widely used for building deep learning models due to the faster convergence rates compared with stochastic gradient descent (SGD). Momentum helps accelerate SGD in the relevant directions in parameter updating, which can minify the oscillations of parameters update route. However, there exist errors in some update steps in optimization algorithms with momentum like ADAM. The fixed momentum weight (e.g., \beta_1 in ADAM) will propagate errors in momentum computing. In this paper, we introduce a novel optimization algorithm, namely Discriminative wEight on Adaptive Momentum (DEAM). Instead of assigning the momentum term weight with a fixed hyperparameter, DEAM proposes to compute the momentum weight automatically based on the discriminative angle. In this way, DEAM involves fewer hyperparameters. DEAM also contains a novel backtrack term, which restricts redundant updates when the correction of the last step is needed. Extensive experiments demonstrate that DEAM can achieve a faster convergence rate than the existing optimization algorithms in training the deep learning models of both convex and non-convex situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.