Abstract

The structural evolution during dissolution of Cu from Cu3Pt (111) single crystal surfaces under potential control has been studied by X-ray scattering. An epitaxial, compressively strained, Pt-rich overlayer is formed upon Cu dissolution and thickens as the potential increases (more anodic). The compressive lattice strain in the Pt-rich overlayers decreases as the potential and overlayer thickness increase. The Pt-rich overlayers exhibit same fcc stacking sequence as the substrate. We compare and contrast the behavior of the dealloyed single crystals with similarly dealloyed Cu3Pt thin films and nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.