Abstract

The mathematical modeling of cybersecurity decision-making heavily relies on cybersecurity metrics. However, achieving precision in these metrics is notoriously challenging, and their inaccuracies can significantly influence model outcomes. This paper explores resilience to uncertainties in the effectiveness of security controls. We employ probabilistic attack graphs to model threats and introduce two resilient models: minmax regret and min-product of risks, comparing their performance.Building on previous Stackelberg game models for cybersecurity, our approach leverages totally unimodular matrices and linear programming (LP) duality to provide efficient solutions. While minmax regret is a well-known approach in robust optimization, our extensive simulations indicate that, in this context, the lesser-known min-product of risks offers superior resilience.To demonstrate the practical utility and robustness of our framework, we include a multi-dimensional decision support case study focused on home IoT cybersecurity investments, highlighting specific insights and outcomes. This study illustrates the framework’s effectiveness in real-world settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.