Abstract
Anomaly detection and change analysis are challenging tasks in stream data mining. We illustrate a novel method that addresses both these tasks in geophysical applications. The method is designed for numeric data routinely sampled through a sensor network. It extends the traditional time series forecasting theory by accounting for the spatial information of geophysical data. In particular, a forecasting model is computed incrementally by accounting for the temporal correlation of data which exhibit a spatial correlation in the recent past. For each sensor the observed value is compared to its spatial-aware forecast, in order to identify the outliers. Finally, the spatial correlation of outliers is analyzed, in order to classify changes and reduce the number of false anomalies. The performance of the presented method is evaluated in both artificial and real data streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.