Abstract
Real-time Model Predictive Control (MPC) of hydraulic structures strongly reduces flood consequences under ideal circumstances. The performance of such flood control may, however, be significantly affected by uncertainties. This research quantifies the influence of rainfall forecast uncertainties and related uncertainties in the catchment rainfall-runoff discharges on the control performance for the Herk river case study in Belgium. To limit the model computational times, a fast conceptual model is applied. It is calibrated to a full hydrodynamic river model. A Reduced Genetic Algorithm is used as optimization method. Next to the analysis of the impact of the rainfall forecast uncertainties on the control performance, a Multiple Model Predictive Control (MMPC) approach is tested to reduce this impact. Results show that the deterministic MPC-RGA outperforms the MMPC and that it is inherently robust against rainfall forecast uncertainties due to its receding horizon strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.