Abstract

Abstract Every product development process is unique and individual. Nevertheless, patterns of recurring and similar elements exist in different processes which experience specific characteristics depending on the type of project. In addition to the different objectives that form the basis of a product development process, projects differ primarily in their share of new development and their degree of complexity. In order to deal appropriately with the resulting uncertainty, implementing agile approaches in processes of mechatronic system development is becoming more popular with the aim of making the development project more flexible. However, it must be borne in mind that not every development process requires an agile approach. Although plan-driven approaches have a poor ability to react to changes, they provide clear structure that leads to a common understanding of the process and a clear definition of objectives. Since a development project does not only contain problems that are well-suited for an agile or a sequential approach it is important to adapt the process to the underlying situation and requirements. In sufficiently plannable situations a purely agile approach would entail the loss of structure. On the other hand, a purely sequential approach for highly uncertain problems means that the process has to be adapted frequently in order to react appropriately to changes and newly acquired knowledge. The approach of ASD – Agile Systems design helps developers to implement suitable development procedures at different process levels depending on the degree of planning stability. In this context, this contribution presents a methodology that examines the influence of new development and complexity on different elements and supports developers in process planning by combining flexible and structuring elements to avoid multiple replanning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call