Abstract

Automated Manufacturing Systems (AMS) consisting of many cooperating devices incorporated into multiple cooperating production lines, sharing common resources, represent industrial Multi-Agent Systems (MAS). Deadlocks may occur during operation of such MAS. It is necessary to deal with deadlocks (more precisely said, to prevent them) to ensure the correct behavior of AMS. For this purpose, among other methods, methods based on Petri nets (PN) are used too. Because AMS are very often described by PN models, two PN-based methods will be presented here, namely based on (i) PN place invariants (P-invariants); and (ii) PN siphons and traps. Intended final results of usage these methods is finding a supervisor allowing a deadlock-free activity of the global MAS. While the former method yields results in analytical terms, latter one need computation of siphons and traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.