Abstract
In this study, we developed a deadlock-free and collision-free liver surgical navigation method by switching potential-based and sensor-based approaches. The potential-based approach selects a near-optimal route from a scalpel tip to an arbitrary neighbor position around a tumor in a 3D organ map converted from digital imaging and communications in medicine (DICOM) data captured by magnetic resonance imaging or computed tomography. However, among complex-shaped blood vessels, the approach sometimes loses the route. To overcome this drawback, we switch to the sensor-based approach. This approach always finds a route near a tumor. However, the path becomes longer. Therefore, when the potential-based approach recovers to find another path, we switch the sensor-based approach back to the potential-based approach. The usefulness of this switching method was carefully ascertained in several kinds of allocations of tumor and blood vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.