Abstract
This work develops an iterative deadlock prevention method for a special class of Petri nets that can well model a variety of flexible manufacturing systems. A deadlock detection technique, called mixed integer programming (MIP), is used to find a strict minimal siphon (SMS) in a plant model without a complete enumeration of siphons. The policy consists of two phases. At the first phase, SMSs are obtained by MIP technique iteratively and monitors are added to the complementary sets of the SMSs. For the possible existence of new siphons generated after the first phase, we add monitors with their output arcs first pointed to source transitions at the second phase to avoid new siphons generating and then rearrange the output arcs step by step on condition that liveness is preserved. In addition, an algorithm is proposed to remove the redundant constraints of the MIP problem in this paper. The policy improves the behavioral permissiveness of the resulting net and greatly enhances the structural simplicity of the supervisor. Theoretical analysis and experimental results verify the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.